Copula selection for graphical models in continuous Estimation of Distribution Algorithms
نویسندگان
چکیده
This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables.
منابع مشابه
Incorporating Regular Vines in Estimation of Distribution Algorithms
This chapter presents the incorporation and use of regular vines into Estimation of Distribution Algorithms for solving numerical optimization problems. Several kinds of statistical dependencies among continuous variables can be taken into account by using regular vines. This work presents a procedure for selecting the most important dependencies in EDAs by truncating regular vines. Moreover, t...
متن کاملCopula Gaussian Graphical Models *
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass many stud...
متن کاملCopula Gaussian Graphical Models and Their Application to Modeling Functional Disability
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompasses...
متن کاملCopula Gaussian Graphical Models and Their Application to Modeling Functional Disability Data1 by Adrian Dobra
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompasses...
متن کاملCopula Gaussian Graphical Models and Their Application to Modeling Functional Disability Data
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass m...
متن کامل